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The calculation method of moments of particle size distribution function is demonstrated on 
the cascade of ideally stirred vessels in which the growth and dissolving of crystals takes place 
alternately. Advantage of this method lies in the possible direct evaluation of moments without 
the need to determine and integrate the function itself. 

The particle size distribution is of primary importance in studies on the phenomena 
concerning the system of particles of various sizes (especially in description of the 
treatment of crystalline suspensions). It is often advantageous to express the proper
ties of distribution functions by use of their global characteristics. Among the most 
important characteristics belong the first general moments. The mathematical model 
of an operation with a system of particles is significantly simplified as far as the know
ledge of moments of the corresponding distribution function suffices for the descrip
tion of the phenomena and as long as one succeeds to make the description so that 
these moments are evaluated directly and not on basis of the knowledge of the distri
bution function itself. For the simple example of the cascade of ideally stirred crystal
lizers the description containing this advantageous property is derived. 

THEORETICAL 

Let us consider a cascade of ideally stirred vessels having the same volume V, which 
are being kept at the same temperature Tl (all odd vessels of the cascade) and T2 
(all even), Tl < T2 • The solution is fed into the first vessel at the temperature 1'., 
Tl < 1'. < Tz, so that in odd members of the cascade the crystals grow at the rate 
Vi while in even members the dissolving takes place. 

The balance of normalized probability densities y(r) of the occurence of particles 
of the size r in the i-th member of the cascade in the dimensionless form is given by 
the relation 
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(1) 

where ai = w/(Vlvd), and w is the volumetric flow rate of the inlet and outlet streams. 
The boundary conditions are derived from the integral shape of the equation (1) 

(2) 

In those members of the cascade where the growth takes place the number of particles 
does not change, S~ Yi -1 dr = S~ Yi dr, so that from Eq. (2) results 

Yi(" = 0) = 0, i = 1, 3, 5, .. .. (3) 

For the dissolving (even) members of the cascade can be derived (see Appendix I) 

Yi(r = 0) = ai J: Yi-l exp (-ra i) dr, i = 2,4, 6, .. .. (4) 

If we take into consideration the well-known relation 

{Y'-1 exp (-air)} = lim ~ ~ }(s + ai), 
s..,o 

where {y;} = 1'; is the Laplace transformation of the function Yi, the balance equa
tions (1) together with the conditions (3) and (4) get the form after the Laplace trans
formation, for the i-th growth vessel 

Yi = [aJ(s + a;)] 1'; _ l' i = 1, 3, 5, ... (5a) 

and for the i-th dissolving vessel 

Yi = [-aJ(s - ai)] [1'; - lim 1'; - I(S"+ ai)], i = 2, 4, 6,... . (5b) 
s..,o 

• By mUltiplication of Eq. (1) by the j-th exponent r and by the following integration 
the relations can be derived between thej-th moment in the i-th member of the cascade 

Mi = J et) rjy. d,' 
J I' 

o 

and the moment of the lower order of the same member and of the same order of the 
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preceeding member 

For the zero moment holds 

M~ = f oo Yi dr = lim Yi . 
o s--+o 

TABLE I 

Terms for Some First Moments Al1 for the Case Yo = 1 

a2 /(al + a2) 

a2 /(a 1 + a2) 

M5{l - a1a3 / [(al + a4) (a3 + a4)]} 

M"g 

j= 0 

Mg _ alaZa3a4aS(al + a3 + a4 + a6)/(a5 + a6) 

(al + a2) (al + a4) (a 1 + a6) (a3 + a4) (a3 + a6) 

M8 
M3 - [ala2a3a4aSa6a7(2al + 2a3 + 3a4 - as)]/ 

Ski'ivanek, Vacek: 

(6) 

(7) 

/[(a 1 + az) (a 1 + a4) (al + a6) (al + as) (a3 + a4) (a3 + as) (a3 + a6) 
(as + a6) (as + as) (a7 + as)] 

j = 1 j = 2 j=3 

0 0 0 

l/al 2/ai 6/af 

1 [1 1 1] C C 1 
-- --_ . 

2 ~ - a1a2 - a2(a1 + a2) ; 6 ~ - ~ ~ - a1a2 -al a1 + a2 ' 

- a2(a1

1

+ a2»)] ; 

1 1 (a2 ) 
-;; - al + a2 ~ = 1 ; 

[ 1 1 1 1 + a3 - a2 ] 
2 ~ - a1 a2 + al a3 - a1 + a2 ; 

M~ + 2- M~ 
a3 

Mi - 2- Mri 
a4 

M~- ~M1 
a4 

M~ = M~ - 2-M1 
a4 
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From Eqs (2) and (3) or from Eq. (5a) results for the odd members M~ = M~ -1, 

i = 1, 3, 5, .... Let us now consider the inlet distribution of particles Yo described 
by the Dirac function 0; then Yo = 1, and from relations (5) to (7) the individual 
moments result as functions of parameters ai' see Table I. 

If in the unit of volume of the first crystallizer originates in a unit of time ,(, = 

= tV/w) Ii particles, then in the unit of volume of the outlet stream is n particles, 
n = Ii V/w. The number of particles leaving the i-th vessel is wnM~. The material 
balance for the first vessel is 

wCo = WC I + wn c;M~ , (8) 

where c; is the shape and volume factor. Similarly it holds for the i-th member 

From Eq. (6) results for M~ 

M~ = M~-l + (_ly+l ~ ± (-It+1 M~ . 
aj n ; 1 an 

Let us denote the equilibrium concentrations at temperatures T1 and T2 , c: = c* , 
c~ = c* + LI and let us assume that the growth rate and dissolving of particles is 
described by relations 

r = dr/doT! = k(c - cn, - dr/dTT 2 = k(ci - c) , 

then for a j holds 

a i = q/(c i - c*) for i = 1, 3, 5, .. . (lOa) 

0i = q/(c* + LI - ci ) for i = 2, 4,6, ... (lOb) 

where q = w/(kV). Relations (9) and (10) represent 2m equations for 2m unknowns 
ai' ci , for m members of the cascade. By their common solution for the specified 
values of V, w, k, n, c*, co, C;, Yo, LI the looked for values of M;, ai' ci can be obtained 
for all members of the considered cascade (or the system of algebraic non-linear 
equations for 0i (see Appendix 11) can be obtained by elimination of Ci from Eqs (9) 
and (10)). 
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RESULTS AND DISCUSSION 

The studied operation represents the model of recrystallization of crystalline suspen
sions under the conditions of thermal oscilations. For recrystallization are typical 
the loss of a number of small crystals and the growth of larger crystals1 . The zero 
moments should thus decrease with· the increasing order number of the cascade 
member, and the third moments increase. We present for illustration the results 
(Table II) calculated by the presented procedure for typical values of inlet parameters 
taken from the monography by Mullin2

: V = 1 dm3
, w = 0·05 dm3 /min, k = 

= 10- 5 dm4 /kg min, n = 106 particles/dm3 min, c* = 0·110 kg/dm 3
, Co = 0·120 kg/ 

dm3
, LI = 0·020 kg/dm3

, ~ = 1 kg/dm3
• 

It is obvious that the resulting moments have the expected properties. It is inte
resting that the significant loss of particles takes place only in the first two or three 
dissolving crystallizers (value of the zero moment quickly converges to a certain 
limiting value with increasing i). Value of the first moment in the growth members 
of the cascade is almost constant. As can be seen from the relations given in Table I, 
it is the result of the fact that values a i are in the chosen example very close (if the 
operation is carried out so that a l = a2 = a3 ... this can be reached by a suitable 
selection of temperatures in each member of the cascade, where, of course, neither 
Tl =F T3 =F T5 .. . nor T2 =F T4 .. . - it can be then demonstrated that M~ = Mf = 

= Mi ... ). 
Equations from which the constants aj were calculated (see Appendix II) have the 

so-called stiff character and are, therefore, very interesting from the point of view 
of numerical solution. This is the consequence of a wide range of the order of magni
tude of values r ( '" 10- 8 m/s) and Ii ( '" 1010 particles/m3 s) in the given equations. 

TABLE II 

Ca~culated Moments of the Distribution Function of Crystal Sizes for the Model Case 

Mi 
0 Mi .106 M~ . 1012 M~ .1017 a; - 5 . 105 

0 0 0 
1 4·8 0·48 
0·5 4 2·4 -0·24 
0·5 12 9·6 0·96 

4 0·375 0·5 9 2·4 - 0·54 
0·375 21 19·2 \·56 
0·3125 0·75 16 6·0 - 0·63 
0·3125 28 28·9 2·10 
0·3125 0·75 24 9-6 - 0·72 
0·3125 2 36 28·4 2-64 
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This way for solution of practical examples arises the necessity to use computers for 
evaluation of numbers of more than 9 to 12 valid figures (i.e. to count with the doubled 
accuracy). 
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APPENDIX I 

From definition - dr /dt= l /ai' for the time Ii needed for the complete dissolving of the particle 
of the size r, results 

With regard to the assumption on ideal mixing in the i-th vessel, the probability density of residence 
of particle in the vessel is ¢i(ti ) = exp (- t). The share of particles of the size r, which do not 
dissolve in the interval <O'/i) and leave the i-th vessel, is given by the relation l-exp (-I) = 

= l-exp ( - air); the total number of particles which leave the i-th vessel is then given by the 
balance 

By coupling this equation with the momentum equation (2) results the relation (4). 

APPENDlXlI 

By coupling the relation (9) and (10), results a system of equations for ai in the form 

uoai - qai - 2s = 0 , 

a~(A - u l) + a2al(A - ul) - q - 2s/ai - a1q = 0, 

a~u2 - a~(q + sMD - 2sMia 3 - 2sM~ = 0, 

ai(A - q/ai- 1) - sM~ - q = 0, pro i = 4,5,6, ... , 

where s = 3n';, ui = c
i 

- c* and where for Ml can be substituted the relations given in Table 1. 
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